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Abstract
The ground and excited state energies of the two-dimensional D− centre have
been calculated, respectively, as a function of magnetic field. The critical
magnetic field values at which the excited states change from unbound to bound
have been found. The optical transition between two bound states is discussed.
Numerical results with the hyperspherical approach are in good agreement with
those obtained through other intensive numerical methods and those obtained
through experiments.

1. Introduction

There has been increasing interest, both experimental and theoretical, in the investigation of
two-dimensional (2D) and quasi-two-dimensional (Q2D) systems such as quantum wells and
superlattices because of their intrinsic physical interest and their technological applications in
electronic devices [1–3]. In multiple-quantum-well (MQW) structures, intentional doping may
induce the formation of D− states. Selective doping of GaAs/GaAlAs quantum wells makes
it possible to realize the situation in which some of the electrons weakly bound to shallow
donors in the GaAlAs barrier are transferred to the GaAs quantum well. In the quantum well
they are trapped by neutral donors D0 forming there a stable population of negatively charged
donor centres D− containing two electrons. Due to the existence of electron–electron (e–e)
interaction it would be expected that, compared to D0, some new phenomena would appear in
D−. In addition, a D0 centre is a simple two-body system, while a D− centre is a three-body
one, thus the exact solution of the D− centre problem would help us to understand the e–e
correlation effects in low dimensional systems.
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SimpleD− centres have been unambiguously identified in bulk samples of GaAs by means
of the magnetic-field dependence of their photoionization threshold [4]. Experiments on the
magneto-optical transition associated with D− centres in GaAs/GaAlAs quantum wells [2]
revealed the effect of magnetic field on the ground and excited states of these centres [3].

The D− states are always discrete because of the Landau quantization of electron motion
in the well planes and the subband quantization of motion along the magnetic field [3]. Only
some of these discrete states are bound, in the sense that their energy lies lower than the energy
of a donor plus the energy of a free electron infinitely far from the donor and in the lowest
Landau level. The binding energy of a D− centre can be expressed by

Eb = ED0 + Ee − ED−

where, if Eb > 0 (< 0), the D− states are the bound (unbound) states. The binding energy of a
D− centre in the magnetic field has been calculated with different models [3, 5, 6]. However,
the results obtained are in the limit of either a low or a high magnetic field. For example,
the ground-state binding energy of a D− centre in a low magnetic field was obtained by a
variational method [5], the precision of which is particularly dependent upon the variational
wave function selected, and the calculation of the excited states is questionable. The energy
of four bound states were obtained in the high magnetic field limit [3, 6], but their variation
as a function of magnetic field is unknown. Up to now, no clear picture has been given for the
variation of binding energy with magnetic field. In this article, we introduce a hyperspherical
approach to study the energy of a D− centre and discuss the behaviour of its binding energy
in a continuously changing magnetic field. We also obtain the critical magnetic field so that
we can know its optical transition spectrum characteristics.

2. Theory

The Schrödinger equation for a D− centre in an external magnetic field �B = ∇ × �A, which is
applied perpendicular to the quantum well interface, is:(
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where �r1 and �r2, respectively, are the position vectors of electrons 1 and 2 in the x − y plane,
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where � is a symbol denoting the angular variables {φ, ϕ1, ϕ2} compactly. The definitions
of R, φ, ϕ1 and ϕ2 can be found in [7–11]. The three different sets of relative coordinates
are schematically shown in figure 1. Correspondingly, the mass-weighted relative coordinates
{�η(j)

1 , �η(j)

2 }, (j = a, b, c) are defined by
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(
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2

) 1
2
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Figure 1. Mass-weighted relative coordinates for a D− centre. In set (a),
√

2�η(a)1 denotes the

displacement from electron 1 to electron 2,
√

1
2 �η(a)2 denotes the displacement from the centre of

mass of two electrons to the impurity state. In set (b), �η(b)1 denotes the displacement from electron 2

to the impurity state, �η(b)2 denotes the displacement from the impurity state to electron 1. In set (c),

�η(c)1 and �η(c)2 denote the displacements from the impurity state to electrons 1 and 2, respectively.

where �r3 is the position vector of the impurity state. The mass of the impurity state is infinite
and �r3 → 0. In equation (2) and in the following the unit of energy is R∗

y = e4m∗
e/ε

2h̄2, while
the units for length and magnetic field are a∗

0 = εh̄2/m∗
ee2 and γ = eh̄B/m∗

ecR
∗
y , respectively.

In the coordinate set (a), the common eigenfunctions of the operators {�2(�), l̂(ϕ1), l̂(ϕ2)},
known as the hyperspherical harmonics Y{ν,l1,l2}(�), are given by

Y{ν,l1,l2}(�) = &l1l2
ν P l1l2

ν (φ)eil1ϕ1 eil2ϕ2 (6)

with separate quantum numbers λ, l1 and l2, while λ = 2ν + |l1| + |l2|. In equation (6), &l1l2
ν is

a normalization constant, P l1l2
ν (φ) is a Jacobi polynomial, and their analytical expressions and

the eigenequations that Y{ν,l1,l2}(�) satisfy can be seen in [11]. The quantum number l1 is odd
for spin triplet states (space antisymmetric wave functions) whereas l1 is even for spin singlet
states (space symmetric wave functions) due to the electron exchange symmetry. However, in
coordinate sets (b) or (c), l1 can be even or odd. Accordingly, the hyperspherical harmonics
in the set (c) are defined as

K±
[λ](�) =

{
1√
2

(
Y{ν,l1,l2}(�) ± Y{ν,l2,l1}(�)

)
(l1 �= l2)

Y{ν,l1,l2}(�) (l1 = l2)
(7)

where the + and − superscripts refer to space symmetric and space antisymmetric states,
respectively. For compactness we use a symbol [λ] to denote the full set of quantum numbers
{ν, l1, l2}. The Zeeman spin energy of electrons is neglected here.
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Having obtained the hyperspherical harmonics (HH) K±
[λ], we now expand the wave

function ψ(R,�) in the following form:

ψ±(R,�) =
∑
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[λ′ ](�) (8)

where φ[λ′ ](R) is the radial part, which is determined by the second-order differential equation[
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2
, and U[λ][λ′ ] is the coupling constant [11, 12]
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In the absence of magnetic field, from equation (9) we can find that φ[λ](R) → e−√−2ER as
R → ∞. Therefore, in the low magnetic field, the eigenfunction should contain an exponential
form,

φ[λ](R) = u[λ](R)e− R
2 . (10)

In addition, the Coulomb energy between particles dominates over the energy of the low
magnetic field. In this case, the wave function of φ[λ](R) or u[λ](R) can be expanded in
terms of the generalized Laguerre polynomials (GLP) L(α)

n (R), i.e. the eigenfunctions of a
single-electron in a two-dimensional Coulombic potential, which is a fast convergence basis,
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Substituting equation (11) into equation (9) with α = 3, multiplying the equation by
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where Ep = 1/4 − γM + 2E, M = l1 + l2 (which is the total angular momentum component
in the z direction), E is the eigenenergy of a D− centre, and
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Equation (12) is a group of linear equations with coefficients{Cn′,[λ′ ]}, from which we can
obtain the eigenvalue Ep.
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In a high magnetic field, to obtain fast convergence of equation (9), we set ρ = γ 1/2R and
then expand the wave function as the linear combination of products of pairs of one-electron
ground-state eigenfunctions in the high magnetic field limit, as follows:

φ[λ](ρ) = κ[λ](ρ)e
− 1

4 ρ
2
ρλ. (13)

Given ρ2 = 2ξ , similar to the low magnetic field, the wave function can be expanded in terms
of the generalized Laguerre polynomial as

κ[λ](ξ) =
∑
n′

Cn′[λ]

√
n′!

(n′ + λ + 1)!
Lλ+1

n′ (ξ). (14)

In the same way as for the low magnetic field, the eigenequation for the high magnetic
field is derived to be
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2
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)
= EsC̄n′[λ′]δ[λ][λ′]δnn′ (15)

where Es = −E/γ + M/2.
The binding energy of D− is written as:

Eb = ED0 + Ee − ED−

where Ee is the ground-state energy of a free electron in a magnetic field, and ED0 is the
ground-state energy of D0 which can be obtained by solving the Schrödinger equation of a
two-dimensional donor in a magnetic field [13–16].

3. Numerical results and discussions

The strength of the magnetic field can be denoted by the dimensionless quantity γ , so γ = 2
means that the magnetic field energy equals the Coulomb energy. To observe the convergence
of the ground state energies in the low and high magnetic fields, the energies of γ = 0.2
and γ = 20 are listed in tables 1 and 2, respectively. We can see that, with the increase of
the total number of basis functions, the convergence is steady, but the effects of the angular
and radial parts on the convergence are different. In the case of low magnetic field, the
convergence of energy with NGLP (the number of the generalized Laguerre polynomials) is
faster than that in high fields, but this is not the case withNHH (the number of the hyperspherical
harmonics). Hence a large number of hyperspherical harmonics in low fields and more Laguerre
polynomials in high fields are needed. On the other hand, a small number of NGLP in the low
fields and a small number ofNHH in the high fields are sufficient to obtain accurate eigenvalues.
We have calculated the energy for γ = 2 with equations (12) and (15), respectively, and found
that 171 NHH and 30 NGLP with equation (12) but 78 NHH and 40 NGLP with equation (15)
were needed to obtain a value with a difference smaller than 10−3.

With coordinates (a) and (c) in equation (5), nearly the same results were obtained for
the ground state. However, for the excited states, the results of the space antisymmetric states
(spin triplet states) with set (a) are higher than those with set (c). The reason is that the electron
exchange energy of the space antisymmetric states is attractive, which makes the total energy
decrease. In the following, all the calculations were performed with set (c).

To our knowledge this is the first study of the effect of magnetic field on the ground state
energy of a two-dimensional D− centre. In figures 2(a) and 2(b), we can see that the present
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results agree well with those of the 22-term variational calculation [5] in a low magnetic field
and the results of [3] in a high magnetic field. Moreover, if the wave function is expanded
in more bases, more subtle results can be achieved. In a high magnetic field, our results are
better than those obtained in the high magnetic field limit of [3]. In the high magnetic field
limit, the Coulomb energy is considered to be zero, and the two electrons are presumed to be
in the lowest Landau levels. In fact, this is not the case in a finite field. The electrons can be
located in other Landau levels because of the existence of Coulomb terms. Our calculations
include the other Landau levels, which makes the energies lower than in [3]. The higher the
magnetic fields are, the more the electrons are located in the lowest Landau levels, so that our
results tend to approach those of [3] in the high magnetic field limit.

In order to compare the ground-state energy of our calculation with that obtained by
experiments performed with far-infrared magnetotransmission and magnetophotoconductivity
measurements [2], we present in figure 3 the binding energies of our results and the experimental
values of [2]. It can be seen that the slope variation of our theoretical binding energy as a
function of magnetic field is steeper than that of experimental results. For comparison, the
theoretical binding energy of 3D D− centres [17, 18] is also plotted and this is reasonably
in agreement with experiment [19]. We can see that the curve of the experimental binding
energy is much steeper than that of 3D D− centres. The experiments in [2] were performed
in 100 Å well and 100 Å barrier GaAs/GaAlAs MQW samples, which can be considered

Table 1. Ground-state energies of D− for γ = 0.2 obtained by diagonalizing equation (12).
NGLP is the number of generalized Laguerre polynomials and NHH the number of hyperspherical
harmonics.

NGLP

NHH 10 15 20 25 30

21 −2.03813660 −2.04485924 −2.04509226 −2.04511902 −2.04512423
28 −2.09333212 −2.09952808 −2.09975414 −2.09978017 −2.09978523
36 −2.09345002 −2.09964818 −2.09987444 −2.09990053 −2.09990561
45 −2.12050694 −2.12639523 −2.12661701 −2.12664241 −2.12664734
55 −2.12057532 −2.12646477 −2.12668664 −2.12671207 −2.12671701
66 −2.13842271 −2.14413028 −2.14434970 −2.14437468 −2.14437952
78 −2.13845469 −2.14416276 −2.14438222 −2.14440721 −2.14441206
91 −2.14933979 −2.15492528 −2.15514274 −2.15516736 −2.15517213
105 −2.14936143 −2.15494726 −2.15516474 −2.15518937 −2.15519415
120 −2.15732790 −2.16283130 −2.16304731 −2.16306243 −2.16306872

Table 2. Ground-state energies of D− for γ = 20 obtained by diagonalizing equation (15). The
definitions of NGLP and NHH are as above.

NGLP

NHH 10 15 20 25 30 35

15 11.8643091 11.8238540 11.8039144 11.7924361 11.7852518 11.7803882
21 11.8640795 11.8234929 11.8034485 11.7919239 11.7846413 11.7797278
28 11.8592906 11.8153281 11.7924274 11.7786040 11.7694903 11.7631125
36 11.8592688 11.8152810 11.7923530 11.7786036 11.7694710 11.7629674
45 11.8587363 11.8140867 11.7904201 11.7758529 11.7660596 11.7529078
55 11.8587335 11.8140644 11.7904052 11.7758397 11.7660276 11.7590376
66 11.8587235 11.8138201 11.7898919 11.7750132 11.7648871 11.7575717
78 11.8586483 11.8138176 11.7898894 11.7750087 11.7648799 11.7575617
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Figure 2. (a) Ground state energies of D− centre as a function of magnetic field. The solid curve
is our result obtained from diagonalizing equation (12). The dashed curve is obtained with the 22-
term variational method [5]. The ground state energy of the D0 centre and the free electron energy
are also plotted (dash-dotted curve). (b) Ground state energies of D− centre in high magnetic
fields. The solid curve is our result obtained from diagonalizing equation (15). The dash-dotted
curve was obtained by Larsen using the high magnetic field limit model [3]. The energy sum of
the D0 centre and the free electron is also plotted (dashed curve)
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Figure 3. Ground state energies of D− centre as a function of magnetic field. The solid curve is
our result. The experimental data (square-dot curve) are from [2]. For comparison, the theoretical
binding energy of the 3D D− centre is shown (dash-dotted curve [18])

as having a quasi-2D structure, while our results were calculated for a strict 2D structure.
Theoretically, the quasi-2D structure or the quantum well structure is between the strictly 2D
and 3D structures; its physical properties such as energy levels should lie between the 2D
and 3D properties. Furthermore, the potential produced by donor atoms and polarized by the
Coulomb field of distant electrons in a 3D centre is completely different from that of the 2D
case, which accounts for the difference of the charge distribution. For the 2D and quasi-2D
centres the charge distribution of the donor electron is not spherically symmetric as in three
dimensions but, instead, is oblate [3]. This produces a dramatic deepening of the ground
state [2] of the 2D D− centre, so our results are reasonable for a strict 2D structure.

With equation (15) we have calculated the binding energies ED− of several low excitation
states such asM = −1,−2,−3 and−4, and then calculated their symmetric and antisymmetric
states, respectively, in set (c). For the same value of M , the energies of symmetric states are
higher than those of antisymmetric states, and all symmetric states are unbound. We find
that, with the increase of the absolute value of M the energy differences E+(M) − E−(M)
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Figure 4. Binding energies as a function of magnetic fields for M = 0, symmetric state (solid
curve) andM = −1, antisymmetric state (dashed curve). The zero value is also plotted (dash-dotted
curve).
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Figure 5. Binding energy as a function of magnetic field for M = −2, antisymmetric state (solid
curve). The dash-dotted curve indicates the binding energy zero value.

quickly become smaller, which is in agreement with the results in the high magnetic field
limit [3]. In this limit, there exist four bound states. Since at B = 0 only the ground state is a
bound state, there must exist thresholds of the magnetic field at which some excited D− states
become bound and remain so in a higher field. In figures 4, 5 and 6, the binding energies of the
ground and several low excited antisymmetric states are presented. It can be seen that binding
occurs for the lowest-lying M = 0 symmetric state and M = −1,−2 and −3 antisymmetric
states. With the increase of the absolute value of M , the variation of the binding energies with
magnetic field becomes less steep, and the critical magnetic field at which the states change
from unbound to bound becomes larger. For the M = −1 antisymmetric state, the critical
value is γc1 ≈ 7 (about 46.6 T), which is very high for current laboratory conditions. For the
M = −2 and M = −3 antisymmetric states, the critical values are γc2 ≈ 255 and γc3 ≈ 105.8,
respectively, which is too high to be reached in the laboratory. That is to say, there may exist
only one or two bound states under present experimental conditions. Moreover, the optical
transition between the two bound states is not possible according to the dipole selection rule
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Figure 6. Binding energies as a function of lg(γ ) of antisymmetric states, for M = −3 (solid
curve) and M = −4 (dashed curve). The dash-dotted line indicates the binding energy zero value.

(=M = ±1) [3] and the general selection rule that requires the initial and final space states to
be either both symmetric or both antisymmetric. Hence there is no discrete optical transition
spectrum observable from 2D D− centres. The two-dimensional D− model gives us some
quantitative information on the behaviour of D− centres in the middle of quantum wells. If the
electrons are allowed to move along the growth axis under confinement of the narrow quantum-
well potential, the magnetic field can produce an attractive quadrupole potential far from the
donor centre [3], which may bind more states in a finite field. Further investigation will be
conducted on D− centres in quantum wells and superlattice structures in various materials.
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